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Some Class-Participation Demonstrations for Decision

Andrew GELMAN

We present several classroom demonstrations that have
sparked student involvement in our undergraduate course in
decision theory and Bayesian statistics. Some of the demon-
strations involve student participation, while others are es-
sentially lectures with extra class discussion.

KEY WORDS: Calibration; Expected value; Instruction;
Probability; Utility.

1. INTRODUCTION

We have taught several times an undergraduate or ML.A.-
level elective course in decision theory and Bayesian statis-
tics. The course requires one term of probability as a pre-
requisite and typically attracts about 15 students. In addi-
tion to the usual lectures, homework, and problem solv-
ing, we have found it useful to conduct frequent classroom
demonstrations. Some of these are essentially lectures, but
with extensive class participation, whereas others involve
actions or calculations by the students. This article outlines
some of our more effective demonstrations. Our contribu-
tion here is in the tricks used to involve students (see Cobb
[1992] and Gnanadeskikan et al. [1997] for some discussion
of the benefits of class participation in statistics classes);
the ideas behind the demonstrations are well known, and
we refer instructors and students to textbooks in applied
decision analysis and Bayesian statistics (e.g., Watson and
Buede 1987; Smith 1988; Clemen 1996; Berry 1995; Gel-
man, Carlin, Stern, and Rubin 1995; and Carlin and Louis
1986) for further references.

Table 1 lists the demonstrations, the concepts they are in-
tended to convey, and the additional materials they require.
The demonstrations in Sections 2-6 may be of general in-
terest to teachers of probability, whereas those in Sections
7-8 relate more specifically to Bayesian inference.

2. HOW MANY QUARTERS? INTRODUCTION TO
THE PRINCIPLES OF DECISION ANALYSIS

This demonstration, which we do on the first day of class,
needs to be preceded by the in-class demonstration of sub-
jective probability intervals (see Sec. 4).

The current demonstration begins by showing a glass jar
full of quarters to the class and letting the students pass it
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around and examine it. The jar has previously been filled
to a specified level, and the instructor does not know how
many quarters are in the jar—the answer has been written
on a sheet of paper and is in a sealed envelope, which the in-
structor places on a table. The students are asked how many
quarters they think are in the jar. A few students will state
guesses, and we then encourage them to explain and discuss
them (for example, “So, Ned, given that Louise guessed that
the jar has 200 quarters, do you still want to guess 100?”).
A student is then asked for a 50% subjective probability
interval, so that the probability is 25% that the true value
is below the low point of the interval and 25% that it is
above the high point. The instructor and the class then prod
the student (for example, “Your interval is [125,150]. If I
offered you an even-money bet, where you would win if
the true number of quarters is between 125 and 150, and
I would win if it is below 125 or above 150, would you
take this bet?””). Once the student has settled on an interval,
we ask if any students disagree with the interval. Someone
will answer and give their interval, and the class is led in
more discussion until they are brought to agreement on an
interval that seems about right for everyone (for example,
[120, 200)).

We then sketch a normal density on the blackboard
and ask what the mean and standard deviation should be
for the specified interval to contain 50% of the probabil-
ity. The computation is easily done, using the fact that
[ — 20, + Z0] is an approximate 50% interval for the
N(p, o%) distribution (the students are already familiar with
the normal distribution from their probability prerequisite).
The horizontal axis of the density is then labeled appropri-
ately, and the students are asked if this seems to represent
their uncertainty (“You are 90% sure the number of quar-
ters is less than X 7, and so on). We ask if their uncertainty
can be expressed exactly by a normal distribution. Some
students will realize the answer is no, because the true num-
ber of quarters must be (a) positive, and (b) an integer. We
discuss how, with a distribution with mean 160 and stan-
dard deviation 60, for example, zero is far in the tail of the
distribution, and the discreteness is a minor issue, so it can
be reasonable to characterize the students’ uncertainty by
a normal distribution. At the end of the demonstration, we
return to this issue and discuss why the results are basically
valid for any unimodal distribution.

We then state the puzzle: you (the class) will be given
a single guess as to the number of quarters in the jar. We
will then open the envelope to reveal the true value. If the
guess turns out to be correct, the money will be given to the
class (yes, we would really do this) and split equally among
the students. If the guess is incorrect, the students get noth-
ing. What should you guess? In answering, assume that the
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Table 1. Concepts that are Intended to be Conveyed and Additional Materials Required to Conduct the Demonstrations

Demonstration

Concepts covered

Additional materials required

How many quarters?
subjective probability

Where are the cancers?
sampling variability

Subjective probability
intervals

Utility of money
cognitive illusions

What is the value

of a life? probabilities

Drawing parameters
out of a hat

Where are the cancers,
a simulation

expected values, optimization,

adjustment of data, shrinkage,

calibration, overconfidence

coherence, risk-aversion,

utilities, calibration of low

Bayesian inference (normal model),
coverage of posterior intervals

Bayesian inference (Poisson model),
prior distributions, shrinkage

Jar filled with money

Handouts of Figures 1 and 2

Handouts of Figure 3;
list of uncertain quantities
and their true values

none

none

Hat filled with draws from
a normal distribution

List of counties with populations;
envelope filled with draws from
a gamma distribution

normal distribution sketched on the board represents your
true state of uncertainty about the number of quarters; thus,
you believe that 160 (say) is the most likely value, 159 and
161 are the next most likely, there is only a 5% chance
that it will be more than two standard deviations away, etc.
Recall also that the jar was filled to a specified level—the
number was not picked in advance. So you need not worry
about psychological issues like, “He wouldn’t have picked
150, because it’s a round number.” It’s just a problem of
geometry—how many quarters are in the jar—and the dis-
tribution on the blackboard represents your uncertainty.

After a short pause, a student speaks up and says they
should guess 160, the mode of the distribution. Does ev-
eryone agree? Yes, everyone in the class agrees, although
some are wary, suspecting a trick. We state that, in fact, the
“obvious” answer is wrong—and there is no trick! Why is
this? A pause to let the students think.

We pull a quarter out of our pocket and shake it between
our two hands, then hold out both fists. One fist contains the
quarter. A student is asked to pick a hand, and then we say,
“This hand contains O or 1 quarters. There’s a 50% chance
that this hand holds a quarter, and if you guess right, you
will get all the quarters in the hand. Should you guess 0 or
1?” The students start to realize—if you guess O and you’re
right, you don’t win anything anyway, so you might as well
guess 1. “Suppose there’s only a 10% chance that there’s
a quarter—what should you guess?” You should still guess
1—it can’t hurt.

Now to a more complicated problem. Suppose the jar
contains either 100 or 200 quarters, and you think the two
possibilities are equally likely. Should you guess 100 or
200? What if there is a 51% chance of 100 quarters and
a 49% chance of 200? Which should you guess? At this
point, some students will choose 100 and some will choose
200. Which choice is better? We bring two students to
the blackboard—suppose Ned would guess 100 and Louise
would guess 200—and play the guessing game repeatedly.
At each play, we choose a random number from 00 to 99
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by rolling dice (see Appendix); if the outcome is in the
range [00, 48], we give Louise $200, and if it is in the range
[49,99], we give Ned $100 (Monopoly money in both cases).
After playing ten or so times, it becomes clear that Louise
is doing better than Ned. We derive this on the blackboard
by showing Ned’s and Louise’s expected value per play and
recalling the law of large numbers.

So Louise’s strategy is better. But, a student asks, we are
only playing the quarters game once, not playing repeatedly,
so why are expected values and the law of large numbers
relevant? Well, life is full of uncertainties—in a given week,
you may buy insurance, bet on a football game, make a
guess on an exam question, and so forth. As you add up
the uncertainties in the events, the law of large numbers
comes into play, and the expected value determines your
long-run gain (just like Ned and Louise). As long as no
single decision or small set of decisions are dominant (this
condition can be made more precise in a more theoretical
course on probability), you can go with the expected value.
(We are ignoring nonmonetary gains such as the thrill of
getting the correct guess.)

Now back to the quarters. Should you guess 160, or
something higher, or something lower? Yes, something
higher. Let’s work it out mathematically. Your goal is to
maximize your expected return. Let = be your guess; then
your expected gain is just z times the probability that the
number of quarters is z. For our distribution with mean
and standard deviation o, that probability is approximately
the normal density at z, so the expected gain is approx-
imately x \/21_W exp (— 42z (z — p)?). To find the maximum
of the expected gain, differentiate with respect to = and set
the derivative to zero; after some cancellation this yields a

quadratic equation, with solution z = 3 (,u +\/u?+ 402).

The answer cannot be negative, so the & must be +. We
plug in 4 and o to compute an answer, rounding to the
nearest integer (for example, in the above example, with
w =160 and o = 60, the optimal guess is = 180. Are the
students happy with this guess? It is useful to tell the story




of the motorist who is stranded at night and is looking for
his keys, not by his car (the most probable location), but
near the street lamp (less probable, but more likely that he
will find his keys, if that is where they are). We then open
the envelope and find the true answer, paying out in the
unlikely case that the guess is exactly correct.

One nice thing about this demonstration is that the an-
swer can be computed exactly, but it requires some non-
trivial analysis (differentiation and the quadratic formula).
This is probably the first problem they have ever seen in
which the exact formula for the normal density is useful.
We conclude by noting that their expected gain (and thus the
instructor’s expected monetary loss from doing the demon-
stration) equals the value of z times the probability that z is
the correct guess. Computing this for the chosen z and the
approximate normal distribution shows the instructor’s ex-
pected loss to be reassuringly small (if © = 160 and o = 60,
an expected loss of 28.3 cents).

3. WHERE ARE THE CANCERS? INTRODUCTION
TO BAYESIAN STATISTICS

We do this demonstration also on the first day of class
(or on the second day if we run out of time). We begin by
passing out copies of Figure 1, reproduced from Manton
et al. (1989); this is a map of the United States, shading
the counties with the highest rates of kidney cancer from
1970-1979. We ask the students what they notice about
the map; one of them points out the most obvious pattern,
which is that many of the counties in the Great Plains states
but relatively few near the coasts are shaded. Why is this?
A student asks whether these are the counties with more
old people. That could be the answer, but it is not—in fact,
these rates are age-adjusted. We point out that many people
retire to Arizona and Florida but they do not have many
shaded counties on this map of age-adjusted cancer death
rates. Any other ideas? A student notes that most of the
shaded counties are in rural areas; perhaps the health care
there is worse than in major cities. Maybe so, but what if
we told you that if we were to highlight the counties with
the lowest age-adjusted kidney cancer death rates, we would
still be mostly highlighting rural areas?

At this point, the students are usually stumped. To help
them, we consider a county with 1,000 people: if it has
even one kidney cancer death in the 1970s, its rate will be
one per thousand, which is among the highest in the na-
tion. Of course, if it has no kidney cancer deaths, its rate
will be lowest in the nation (tied with all the other counties
with zero deaths). The observed rates for smaller counties
are much more variable, and hence they are much more
likely to be shaded, even if the true probability of cancer
in these counties is nothing special. A small county has an
observed rate of one per thousand, this is probably ran-
dom fluctuation, but if a large county such as Los Angeles
has a very high rate, it is probably a real phenomenon. We
now hand out copies of Figure 2 (also from Manton et al.
1989), a map that shades the counties with the highest ad-
Jjusted kidney cancer death rates, where the adjusted rate
for each county is a weighted average of (a) the observed

rate in the county and (b) the national average rate. In this
weighted average, the relative weight attached to the ob-
served rate is approximately proportional to the population
of the county, so that in counties with extremely small popu-
lation the rate is shrunk virtually all the way to the national
average, in counties with moderate population the rate is
shrunk part way toward the national average, and in very
large counties the adjusted rate is essentially equivalent to
the observed rate. Figure 2 looks much different from Fig-
ure 1, with much more of the shading appearing in populous
counties. Most of the extreme rates in Figure 1 occurred in
low-population counties, and they got shrunk so much to-
ward the national average that they were no longer extreme
in Figure 2. (In fact, the shading in Figure 2 overempha-
sizes the high-population counties—see Gelman and Price
[in press] for a discussion of problems of mapping adjusted
rates—but this is not an issue we discuss in our introductory
class.)

This example is a nice introduction to applied statis-
tics because it shows a case where statistical adjustment
is clearly appropriate and is, in fact, a standard tool in epi-
demiology (see Clayton and Bernardinelli 1992), but we
can explain it without worrying about prior distributions or
probability theory. We return to this example later in the
class to illustrate Bayesian inference (see Sec. 8.).

4. SUBJECTIVE PROBABILITY INTERVALS AND
CALIBRATION

A well-known, and very useful, demonstration involves
the calibration of probability intervals. We start by asking a
student to give his or her guess at some uncertain quantity
(for example, the number of master’s degrees conferred in
the United States in 1990). The student is then asked to
give a 90% probability interval (more precisely, the 5% and
95% quantiles) for the uncertain quantity, at which point
we ask the other students to comment. If a student in the
class would place more or less than 90% probability on
the stated interval, we point out the opportunity for a bet
that both parties should accept. We then give each student a
minute to write down his or her 90% interval, then we write
the intervals on the board. It is typically the case that the
intervals are relatively short with little overlap, so that it is
in fact impossible for 90% of them to contain the true value,
whatever it happens to be. Thus, substantial differences of
opinion have been revealed. The students are now given
the opportunity to adjust their intervals, and then the true
value is revealed. It becomes clear from the discussion that
most students, when told the guesses of the others, tend to
widen their uncertainty intervals—that is, they recognize
their original intervals to be overconfident. The students
may be reassured to see the well-known example displayed
Figure 3, reproduced from Hynes and Vanmarcke (1977), in
which a set of internationally known geotechnical engineers
show overconfidence (in retrospect) in their probabilistic
forecasts of the failure height of an embankment.

Later in the term, we follow up with a written exercise in
which each student is given a list of several unknown quan-
tities and asked to write down 50% and 90% intervals for
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Figure 1. Counties of the U.S., with Three Levels of Shading Indicating the Counties with the Highest 25%, 10%, and 5% Age-Standardized
Death Rates for Cancer of Kidney/Ureter for U.S. White Males, 1970—1979. From Manton et al. (1989).

each. They will still tend to be overconfident (even though
we warned them about this in the class discussion), in that,
for most students, fewer than 50% of their 50% intervals
and fewer than 90% of their 90% intervals will contain the
true value (see Alpert and Raiffa [1984] for an involved dis-
cussion of this phenomenon). To keep students interested,
we include questions about themselves (for example, the
average weight of the students in the class) and topics in
education (for example, the number of master’s degrees),
as well as quantities about which the students know very
little (for example, the total number of eggs produced in the
U.S. in 1965, a question from Alpert and Raiffa [1984]). We
perform the discussion before the written exercise because

we have found that many students do not understand the
concept of a probabilistic forecast until we have discussed
it in class together.

5. UTILITY OF MONEY AND RISK-AVERSION

To introduce the concept of utility, we ask each student
to write on a sheet of paper the probability p; for which
they are indifferent between (a) a certain gain of $1, and
(b) a gain of $1,000,000 with probability p; or $0 with
probability (1 — p;). (For brevity, we write this as $1 =
p1$1,000,000 + (1 —p1)$0. We use = rather than = because
utility for money is not necessarily linear.) The students
are then asked to write down, in sequence, the probabilities
D2, P3, P4, for which $1 = p2$10+(1—p2)$0; $10 = p3$100+

Figure 2. Counties of the U.S., with Three Levels of Shading Indicating the Counties with the Highest 26%, 10%, and 5% Adjusted Age-
Standardized Death Rates for Cancer of Kidney/Ureter for U.S. White Males, 1970—1979. From Manton et al. (1989).
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Figure 3. Experts’ Predictions and 50% Predictive Intervals of the
Height at Which an Embankment Would Fail, Along with the True Value.
Note that none of the predictions included the true value. From Hynes
and Vanmarcke (1977).

(1 — p3)$1; $100 = p4$1000 + (1 — p4)$10; and $1000 =
531,000,000 + (1 — p5)$100. One of the students is then
brought to the blackboard to give his or her answers to
the questions. The probabilities are checked for coherence
(that is, the existence of a consistent set of utilities and
preferences), as follows. First, the answers to the questions
involving pe and ps are combined to yield a comparison
between $1, $100, and $0. For example, suppose ps = .1
and p; = .15 (when working through the example in class,
using the student’s actual numbers is clearer than working
with the algebra of pi, pe, p3, and so on). Then,

$1 = .1810+.9%0

1(.15$100 + .85 $1) + .9.$0
.015$100 + .085$1 + .9.$0
015

9
.08581 + .915 (T}ﬁ $100 + 15 $0> .

This holds if and only if (-:3i2 $100 + % $0) = $1. (Note:
in class we work this and subsequent utility computations
out using decision trees, as illustrated in Figure 4, rather
than equations.) Given this student’s answers to the ques-
tions, we have deduced that $1 = .0164 $100 + .9836 $0.
We then repeat this procedure, using the student’s value of
p4, to determine the utility of $1 relative to $1,000 and $0,
and then once again, using ps, to determine the utility of
$1 relative to $1,000,000 and $0. Finally, this derived value
is compared to the student’s original value of p;. These
will disagree, meaning that the student’s preferences are
incoherent. The students in the class then discuss with the
student at the blackboard how to change py,...,ps to give
coherent and reasonable answers. It may be necessary to re-
mind the students that coherence does not require the utility
for money to be linear. The student at the blackboard then

is asked to sketch his or her utility function for money, as
implied by the equivalence statements above.

A related demonstration goes as follows. A person is
somewhat risk-averse and is indifferent between (a) a cer-
tain gain of $10 and (b) a 55% chance of $20 and a 45%
chance of $0. Similarly, he or she is indifferent between (a)
a certain gain of $20 and (b) a 55% chance of $30 and a
45% chance of $10; and, in general, indifferent between (a)
a certain gain of $z and (b) a 55% chance of $(x + 10) and
a 45% chance of $§(z — 10); for « = 30, 40, 50, . . ..

Is this reasonable? The students assent.

[Conversely, this can be done as more of a “set-up”
by picking a student and asking for what value p is he
or she neutral between the alternatives (a) $10 and (b)
a p probability of $20 and a (1 — p) probability of $0;
then repeating this question for $20 = p$30 + (1 — p)$10,
$30 = p$40+ (1—p)$20; etc. The student will probably give
a value of p that is near or greater than .55.]

Then answer the following question: For what dollar
value y is this person indifferent between (a) a certain
gain of $y, and (b) a 50% chance of $1 billion and a
50% chance of $0? The answer, surprisingly, is that $y
is between $30 and $40, as can be derived easily by
mathematical induction. For example, using utility nota-
tion, the given indifferences can be written as U($z) =
55U (8(z + 10)) + 45U ($(z — 10)) for each z, and thus
U($(z +10)) — U($z) = £ (U($z) — U($(z — 10))). Set-
ting U($0) = 0 and U($10) = 1 (the location and scale
of the utility function can be set arbitrarily) and evaluating

A $/0

8 <$
0

u

1\ $100
. 85
= 9 31
$0
0% $100
= OB __ g

Figure 4. lllustration of a Derivation of Relative Ultilities Using Decision
Trees, Replicating the Steps of Equation (1).
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the expressions in order yields U($20) = 1 + 2 = 1.818,
U($30) = 1+ 45 4 (£5)? = 2487, ..., U($1 billion) =
1+ 22 + (é—gf + (%)3 oot (%)99999999 Nl =
5.5. Since U($30) < .5U($1 billion) + .5U(80), U($40) >
.5U($1 billion) 4 .5U($0), and utility is an increasing func-
tion of money, $y must be between $30 and $40.

The student believes each step of the argument but is un-
happy with the conclusion. Where is the mistake? It is that
fearing uncertainty is not necessarily the same as “risk aver-
sion” in utility theory: the latter can be expressed as a con-
cave utility function for money, whereas the former implies
behavior that is not consistent with any utility function (see
Kahneman and Tversky 1979). This is a good time to dis-
cuss cognitive illusions, many of which have been demon-
strated in the context of monetary gains and losses. (See
Kahneman, Slovic, and Tversky [1984] and Thaler [1992]
for much more on this topic, including many experiments
that can be performed in the classroom.) Is decision theory
descriptive? Is it normatively appropriate?

6. WHAT IS THE VALUE OF A LIFE?

We begin by asking the students what is the dollar value
of their lives—how much money would they accept in ex-
change for being killed? They generally answer that they
would not be killed for any amount of money. Now flip
it around: suppose you have the choice of (a) your current
situation, or (b) a probability p of dying and a probability
(1 — p) of gaining $1. For what value of p are you indif-
ferent between (a) and (b)? Many students will answer that
there is no value of p; they always prefer (a). What about
p = 107122 If they still prefer (a), let them consider the
following example.

To get a more precise value for p, it may be useful to
consider a gain of $1,000 instead of $1 in the above deci-
sion. To see that $1,000 is worth a nonnegligible fraction
of a life, consider that people will not necessarily spend
that much for air bags for their cars. Suppose a car will
last for 10 years; the probability of dying in a car crash
in that time is of the order of 10 - 40,000/250,000,000 (the
number of car crash deaths in ten years divided by the U.S.
population), and if an air bag has a 50% chance of saving
your life in such a crash, this gives a probability of about
8x10~* that the bag sill save your life. Once you have mod-
ified this calculation to your satisfaction (e.g., if you do not
drive drunk, the probability of a crash should be adjusted
downward) and determined how much you would pay for
an air bag, you can put money and your life on a common
utility scale. At this point, you can work your way down
to the value of $1 (as in the demonstration in Sec. 5). This
can all be done using a student volunteer at the blackboard
and the other students making comments and checking for
coherence.

The student discussions can be enlightening. For exam-
ple, one student, Julie, was highly risk-averse: when given
the choice between (a) the current situation, and (b) a .00001
probability of dying and a .99999 of gaining $10,000, she
preferred (a). Another student in the class pointed out that
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.00001 is approximately the probability of dying in a car
crash in any given three-week period. After correcting for
the fact that Julie does not drive drunk, and that she drives
less than the average American, perhaps this is her prob-
ability of dying in a car crash, with herself as a driver, in
the next six months. By driving, she is accepting this risk;
is the convenience of being able to drive for six months
worth $10,000 to her? This demonstration is especially in-
teresting to students because it shows that they really do
put money and lives on a common scale, whether they like
it or not. There is a vast literature on the practical, political,
and moral issues involved in equating dollars and lives; see,
for example, Rhoads (1980) and Dorman (1996).

7. DRAWING PARAMETERS OUT OF A HAT

When introducing Bayesian statistics, a vivid way to il-
lustrate population (or prior) and data distributions is by
physical sampling. The demonstration goes as follows. Two
students out of the class are picked to be “statisticians”
and are taken out of the room. Each of the remaining stu-
dents then draws a slip of paper out of a hat, which, be-
fore the lecture, the instructor filled with random samples
from a N(100,152) distribution. This slip of paper repre-
sents 6;, the “true 1Q” of student j. (IQ test scores are
scaled so that their distribution is approximately normal.)
Each of these students rolls a die several times to create a
random N(0,10?) random variable (see Appendix) to rep-
resent “measurement error,” and then adds it to his or her
true IQ to obtain a “measured 1Q,” y;.

The two “statisticians” are then brought back into the
room. They are told the population distribution of “true
IQ’s,” the distribution of measurement error, and the “mea-
sured 1Q’s” y;, and are asked to estimate the “true 1Q” 6;
for each student in the class and to supply 90% posterior
intervals. The length and coverage of these intervals are
compared to the classical 90% intervals obtained from the
“measurements” alone. We find that both sorts of intervals
have the correct coverage properties (on average), but the
Bayesian intervals are shorter, which makes sense because
the Bayesian intervals make use of the known population
distribution.

This example can be stretched out further by discussions
of the prior distribution, the likelihood, and so forth. The
“IQ” context is a nice hook to get students involved.

8. WHERE ARE THE CANCERS? A SIMULATION

Near the end of the course, we work through the basics of
Bayesian inference, including results for normal, binomial,
and Poisson models. Where possible, we use prior distribu-
tions that correspond to actual populations, thus treating all
Bayesian models as implicitly hierarchical (that is, with a
prior distribution that represents the distribution of an ac-
tual population of parameters). As an example, we adapt
the “drawing parameters out of a hat” demonstration to the
kidney cancer mortality rates in U.S. counties (see Sec. 3).
To do this requires first setting up a probability model for
the parameters ¢, (the underlying ten-year kidney cancer
death rates in U.S. counties j) and the data y; (the observed



number of deaths out of a population n; in each county j).
We assume a Poisson distribution for each y; with mean
n;@; (ignoring the age-adjustment) and a conjugate gamma
population distribution for the 6;’s, with hyperparameters
set by matching moments (itself an interesting discussion
topic), which comes out to Gamma(20,20/(4.65 x 1075))
(see Manton et al. 1989 and Gelman and Price in press).
A student in the class is asked to compute the mean and
standard deviation of this gamma distribution and to sketch
its density function on the blackboard.

The demonstration now begins. Two students out of the
class are picked to be “public health officials” and are taken
out of the room. Each remaining student in the class is
assigned a county j (identified by its name and popula-
tion), taken from a list chosen to include a wide range of
populations, ranging from about a thousand to over seven
million (Los Angeles), and also, to keep the students’ in-
terest, counties that are well known (e.g., New York), or
with amusing names (e.g., Jim Hogg County, TX). Each
student then selects a true (underlying) kidney cancer rate
g; for his or her county by drawing from an envelope
that I had previously stuffed with random simulations from
the Gamma(20, 20/(4.65 x 10~5)) distribution. The physical
sampling brings an immediacy to the meaning of the prior
distribution in a hierarchical model.

Each student then multiplies the county population n; by
the underlying rate ; to get an expected number of kidney
cancer deaths in a ten-year period. The student then draws
a random number, y;, from the Poisson distribution with
this mean (see Appendix).

All this is written on the blackboard. Then we erase the
true rates and the expected rates, leaving only the county
names, populations, “observed” deaths y;, and “observed”
rates y;/n;. The “public health officials” are then brought
back into the room and asked to estimate the ranking of
the counties in order of the true death rates ¢;. The highest
and lowest observed rates, of course, will tend to be in low-
population counties.

The class is then led through the Bayesian analysis, which
yields the posterior mean and standard deviation of 6;, con-
ditional on y;, for each county in the table. We conclude
the demonstration by writing the true values of 6; back
on the blackboard, checking the confidence interval cover-
age, and comparing the underlying, observed, and posterior
mean death rates.

9. CONCLUSION

In-class demonstrations serve several purposes, including

(1) focusing student attention on difficult conceptual issues

that are hard to learn in a lecture or by solving homework
problems (for example, the principle of expected gain in
the quarters example; determining the value of a life); (2)
alerting students to their cognitive illusions and that they
are shared with others (for example, the uncalibrated sub-
jective probability intervals and the incoherent utilities for
money); (3) bringing personal issues into the class, thus al-
lowing each student to make a personal contribution to the
discussion (for example, different areas knowledge in the

subjective probability intervals and different preferences re-
garding the value of a life); (4) dramatizing counterintuitive
results which a student might not realize as counterintuitive
if he or she were not forced to guess out loud (the quarters
and the cancer maps); and (5) demonstrating the multiple
levels of uncertainty in a Bayesian analysis, as well as the
coverage property of posterior intervals (drawing parame-
ters out of a hat and the cancer rate simulations). In addition,
eliciting discussion in these demonstrations has been useful
in introducing the students to the instructor and each other
and has led to a high level of student participation.

APPENDIX: RANDOM NUMBERS VIA DICE

At the beginning of the term, each student in the class is
given a 20-sided die on which each of the digits from 0 to
9 are written twice. (These dice can be bought in a game
store for about 40 cents each.) Rolling the die once gives a
random digit. We ask the students how to create a random
variable with an approximate N(u,o?) distribution, using
five rolls of the die. After some discussion, they can derive
that the sum of five independent random digits has mean
22.5 and standard deviation v/41.25 = 6.42, and we inform
them that the distribution is close to normal. (This can be
demonstrated by asking each student in the class to roll five
dice, and then displaying a histogram of the students’ to-
tals.) Thus, the sum of five random digits, minus 22.5, times
0/6.42, plus u, has the desired distribution. (The students
are required to bring calculators to class.)

A more difficult problem is creating a random sample
from a Poisson(A) distribution. We break this into two
tasks: large and small A. For large A\, we can use the nor-
mal approximation, drawing from the N(X, A) distribution
and rounding to the nearest integer. We ask the class: how
big must A be for this to work? Well, at the very least, we
do not want to be drawing negative numbers, which sug-
gests that the mean of the distribution should be at least
two standard deviations away from zero. Thus, A > 2v/),
so A > 4. For smaller )\, we can compute the distribution
function directly, using the formula for the Poisson density
function. We can round the density function to two decimal
places and then simulate using two random digits obtained
by rolling a die twice.

We tell the students that, in practice, more efficient and
exact simulation approaches exist; the methods here are use-
ful for developing students’ intuitions about distributions,
means, and variances.

[Received April 1996. Revised November 1996.]
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